Cytotoxic alkyl-quinolones mediate surface-induced virulence in pseudomonas aeruginosa

16Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Surface attachment, an early step in the colonization of multiple host environments, activates the virulence of the human pathogen P. aeruginosa. However, the downstream toxins that mediate surface-dependent P. aeruginosa virulence remain unclear, as do the signaling pathways that lead to their activation. Here, we demonstrate that alkyl-quinolone (AQ) secondary metabolites are rapidly induced upon surface association and act directly on host cells to cause cytotoxicity. Surface-induced AQ cytotoxicity is independent of other AQ functions like quorum sensing or PQS-specific activities like iron sequestration. We further show that packaging of AQs in outer-membrane vesicles (OMVs) increases their cytotoxicity to host cells but not their ability to stimulate downstream quorum sensing pathways in bacteria. OMVs lacking AQs are significantly less cytotoxic, suggesting these molecules play a role in OMV cytotoxicity, in addition to their previously characterized role in OMV biogenesis. AQ reporters also enabled us to dissect the signal transduction pathways downstream of the two known regulators of surface-dependent virulence, the quorum sensing receptor, LasR, and the putative mechanosensor, PilY1. Specifically, we show that PilY1 regulates surface-induced AQ production by repressing the AlgR-AlgZ two-component system. AlgR then induces RhlR, which can induce the AQ biosynthesis operon under specific conditions. These findings collectively suggest that the induction of AQs upon surface association is both necessary and sufficient to explain surface-induced P. aeruginosa virulence.

Cite

CITATION STYLE

APA

Vrla, G. D., Esposito, M., Zhang, C., Kang, Y., Seyedsayamdost, M. R., & Gitai, Z. (2020). Cytotoxic alkyl-quinolones mediate surface-induced virulence in pseudomonas aeruginosa. PLoS Pathogens, 16(9). https://doi.org/10.1371/journal.ppat.1008867

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free