Patchouli (Pogostemon Cablin Bent) has higher PA (Patchouli Alcohol) and oil production if grown in soil containing 75% organic matter. One way that can be used to detect the content of organic matter is to use soil images. The problem in the use of soil images is the color of the soil that is almost similar, namely the gradation between dark brown to black. Therefore, color features are not enough to be used as input in the recognition process. For this purposes, texture features are added in this study in addition to color features. The color features are extracted using color moment and the texture features are extracted using Gray Level Co-occurrence Matrix (GLCM). These feature was then chosen to get the best combination as input in the identification process using the Backpropagation Neural Network (BPNN). The system identifies the quantity of soil organic matter into five classes, namely very low, low, medium, high, and very high. The highest accuracy result obtained was 73% and MSE value 0.5122 by using five GLCM features (Angular Second Moment, contrast, correlation, Inverse Difference Moment, and entropy). This result was obtained by using the BPNN parameter, namely learning rate values 0.5, maximum iteration values of 1000, number training data 210, and total test data 12.
CITATION STYLE
Dewi, C., Sundari, S., & Mardji, M. (2019). Texture Feature On Determining Quantity of Soil Organic Matter For Patchouli Plant Using Backpropagation Neural Network. Journal of Information Technology and Computer Science, 4(1), 1–14. https://doi.org/10.25126/jitecs.20194168
Mendeley helps you to discover research relevant for your work.