Robust H∞ Tracking Control of Stochastic Innate Immune System Under Noises

  • Chen B
  • Chang C
  • Chuang Y
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The innate immune system provides a tactical response, signaling the presence of ‘non-self’ organisms and activating B cells to produce antibodies to bind to the intruders’ epitopic sites. The antibodies identify targets for scavenging cells that engulf and consume the microbes, reducing them to non-functioning units (Stengel et al., 2002b). The antibodies also stimulate the production of cytokines, complement factors and acute-phase response proteins that either damage an intruder’s plasma membrane directly or trigger the second phase of immune response. The innate immune system protects against many extracellular bacteria or free viruses found in blood plasma, lymph, tissue fluid, or interstitial space between cells, but it cannot clean out microbes that burrow into cells, such as viruses, intracellular bacteria, and protozoa (Janeway, 2005; Lydyard et al., 2000; Stengel et al., 2002b). The innate immune system is a complex system and the obscure relationships between the immune system and the environment in which several modulatory stimuli are embedded (e.g. antigens, molecules of various origin, physical stimuli, stress stimuli).This environment is noisy because of the great amount of such signals. The immune noise has therefore at least two components: (a) the internal noise, due to the exchange of a network of molecular and cellular signals belonging to the immune system during an immune response or in the homeostasis of the immune system. The concept of the internal noise might be viewed in biological terms as a status of sub-inflammation required by the immune response to occur; (b) the external noise, the set of external signals that target the immune system (and hence that add noise to the internal one) during the whole life of an organism. For clinical treatment of infection, several available methods focus on killing the invading microbes, neutralizing their response, and providing palliative or healing care to other organs of the body. Few biological or chemical agents have just one single effect; for example, an agent that kills a virus may also damage healthy ‘self’ cells. A critical function of drug discovery and development is to identify new compounds that have maximum intended efficacy with minimal side effects on the general population. These examples include antibiotics as microbe killers; interferons as microbe neutralizers; interleukins, antigens from killed (i.e. non-toxic) pathogens, and pre-formed and monoclonal antibodies as immunity enhancers (each of very different nature); and anti-inflammatory and antihistamine compounds as palliative drugs (Stengel et al., 2002b). Recently, several models of immune response to infection (Asachenkov, 1994; Nowak & May, 2000; Perelson & Weisbuch, 1997; Rundell et al., 1995) with emphasis on the human-

Cite

CITATION STYLE

APA

Chen, B.-S., Chang, C.-H., & Chuang, Y.-J. (2011). Robust H∞ Tracking Control of Stochastic Innate Immune System Under Noises. In Robust Control, Theory and Applications. InTech. https://doi.org/10.5772/14732

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free