Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model

65Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

The upcoming satellite mission EnMAP offers the opportunity to retrieve information on the seasonal development of vegetation parameters on a regional scale based on hyperspectral data. This study aims to investigate whether an analysis method for the retrieval of leaf area index (LAI), developed and validated on the 4 m resolution scale of six airborne datasets covering the 2012 growing period, is transferable to the spaceborne 30 m resolution scale of the future EnMAP mission. The widely used PROSAIL model is applied to generate look-up-table (LUT) libraries, by which the model is inverted to derive LAI information. With the goal of defining the impact of different selection criteria in the inversion process, different techniques for the LUT based inversion are tested, such as several cost functions, type and amount of artificial noise, number of considered solutions and type of averaging method. The optimal inversion procedure (Laplace, median, 4% inverse multiplicative noise, 350 out of 100,000 averages) is identified by validating the results against corresponding in-situ measurements (n = 330) of LAI. Finally, the best performing LUT inversion (R 2 = 0.65, RMSE = 0.64) is adapted to simulated EnMAP data, generated from the airborne acquisitions. The comparison of the retrieval results to upscaled maps of LAI, previously validated on the 4 m scale, shows that the optimized retrieval method can successfully be transferred to spaceborne EnMAP data.

Cite

CITATION STYLE

APA

Locherer, M., Hank, T., Danner, M., & Mauser, W. (2015). Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sensing, 7(8), 10321–10346. https://doi.org/10.3390/rs70810321

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free