Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

  • TRAUMANN A
  • TINT P
  • JÄRVIK O
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

© 2014, Kaunas University of Technology. All rights reserved. The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil) were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA). It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM) and confirmed by the NIST Mass Spectral library and retention times of standards.

Cite

CITATION STYLE

APA

TRAUMANN, A., TINT, P., JÄRVIK, O., & OJA, V. (2014). Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling. Materials Science, 20(3). https://doi.org/10.5755/j01.ms.20.3.4549

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free