Photoreduction with visible light can enhance the photocatalytic activity of TiO2 for the production of hydrogen. In this article, we present a strategy to photoreduce a palladium-doped TiO2 photocatalyst by using near-UV light prior to its utilization. A sol-gel methodology was employed to prepare the photocatalysts with different metal loadings (0.25–5.00 wt% Pd). The structural and morphological characteristics of the synthesized Pd-TiO2 were analyzed by using X-ray Diffraction (XRD), BET Surface Area (SBET), TemperatureProgrammed Reduction (TPR), Chemisorption and X-ray Photoelectron Spectroscopy (XPS). Hydrogen was produced by water splitting under visible light irradiation using ethanol as an organic scavenger. Experiments were developed in the Photo-CREC Water-II (PCW-II) Reactor designed at the CREC-UWO (Chemical Reactor Engineering Centre). It was shown that the mesoporous 0.25 wt% Pd-TiO2 with 2.5 1eV band gap exhibits, under visible light, the best hydrogen production performance, with a 1.58% Quantum Yield being achieved.
CITATION STYLE
Rusinque, B., Escobedo Salas, S., & de Lasa, H. (2020). Photoreduction of a Pd-doped mesoporous TiO2 photocatalyst for hydrogen production under visible light. Catalysts, 10(1). https://doi.org/10.3390/catal10010074
Mendeley helps you to discover research relevant for your work.