IGS RTS precise orbits and clocks verification and quality degradation over time

243Citations
Citations of this article
104Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The International GNSS Service (IGS) real-time service (RTS) provides access to real-time precise products such as orbits, clocks and code biases, which can be used as a substitute for ultra-rapid products in real-time applications. The true performance of these products can be assessed by the Analysis Centers daily statistics derived from the comparison with IGS rapid products. Additionally, indirect verification is performed by their application to various precise point positioning strategies. Monitoring results and basic descriptions of these products are available at the official RTS Web page (http://rts.igs.org/). We present a more detailed description of RTS products. Information from various sources is collected to provide products application methodology and describe their important features. We provide extended verification of the products using 1 week of real-time correction data. Results are presented separately for GNSS constellations, considering satellite block and type of onboard clock. Comparison with ESA/European Space Operations Centre final products proves the high accuracy of RTS orbits and clocks, which is 5 cm for GPS orbits, 8 cm for GPS clocks, 13 cm for GLONASS orbits and 24 cm for GLONASS clocks. The real-time correction performance is also examined regarding availability and latency. In general, the availability of corrections was beyond 95 % for GPS and beyond 90 % for GLONASS. Since the increasing degradation of product quality with latency is critical for real-time applications, the relation between product latency and accuracy is analyzed. It confirms that high-rate stream update intervals are suitable for the data provided and that the obsolete data should not be used. To avoid this, we propose a method of short-term prediction of RTS corrections that extends the application period of obsolete correction data without a significant loss in orbit quality. Using polynomial fitting, it is possible to forecast the orbit corrections reliably up to 8 min for GPS and 4 min for GLONASS.

Cite

CITATION STYLE

APA

Hadas, T., & Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93–105. https://doi.org/10.1007/s10291-014-0369-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free