Engineered Plant Minichromosomes

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The advent of transgenic technologies has met many challenges, both technical and political; however, these technologies are now widely applied, particularly for crop improvement. Bioengineering has resulted in plants carrying resistance to herbicides, insects, and viruses, as well as entire biosynthetic pathways. Some of the technical challenges in generating transgenic plant or animal materials include: an inability to control the location and nature of the integration of transgenic DNA into the host genome, and linkage of transformed genes to selectable antibiotic resistance genes used in the production of the transgene cassette. Furthermore, successive transformation of multiple genes may require the use of several selection genes. The coordinated expression of multiple stacked genes would be required for complex biosynthetic pathways or combined traits. Engineered nonintegrating minichromosomes can overcome many of these problems and hold much promise as key players in the next generation of transgenic technologies for improved crop plants. In this review, we discuss the history of artificial chromosome technology with an emphasis on engineered plant minichromosomes.

Cite

CITATION STYLE

APA

Gaeta, R. T., & Krishnaswamy, L. (2011). Engineered Plant Minichromosomes. In Methods in Molecular Biology (Vol. 701, pp. 131–146). Humana Press Inc. https://doi.org/10.1007/978-1-61737-957-4_7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free