miR-23a Targets Interferon Regulatory Factor 1 and Modulates Cellular Proliferation and Paclitaxel-Induced Apoptosis in Gastric Adenocarcinoma Cells

55Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

MicroRNAs are a class of non-coding RNAs that function as key regulators of gene expression at the post-transcriptional level. In our previous research, we found that miR-23a was significantly up-regulated in human gastric adenocarcinoma cells. In the current study, we demonstrate that miR-23a suppresses paclitaxel-induced apoptosis and promotes the cell proliferation and colony formation ability of gastric adenocarcinoma cells. We have identified tumor suppressor interferon regulator factor 1 (IRF1) as a direct target gene of miR-23a. We performed a fluorescent reporter assay to confirm that miR-23a bound to the IRF1 mRNA 3′UTR directly and specifically. The ectopic expression of IRF1 markedly promoted paclitaxel-induced apoptosis and inhibited cell viability and colony formation ability, whereas the knockdown of IRF1 had the opposite effects. The restoration of IRF1 expression counteracted the effects of miR-23a on the paclitaxel-induced apoptosis and cell proliferation of gastric adenocarcinoma cells. Quantitative real-time PCR showed that miR-23a is frequently up-regulated in gastric adenocarcinoma tissues, whereas IRF1 is down-regulated in cancer tissues. Altogether, these results indicate that miR-23a suppresses paclitaxel-induced apoptosis and promotes cell viability and the colony formation ability of gastric adenocarcinoma cells by targeting IRF1 at the post-transcriptional level. © 2013 Liu et al.

Cite

CITATION STYLE

APA

Liu, X., Ru, J., Zhang, J., Zhu, L. hua, Liu, M., Li, X., & Tang, H. (2013, June 10). miR-23a Targets Interferon Regulatory Factor 1 and Modulates Cellular Proliferation and Paclitaxel-Induced Apoptosis in Gastric Adenocarcinoma Cells. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0064707

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free