Mutants of Cre recombinase with improved accuracy

35Citations
Citations of this article
146Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wild-type and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins.

Cite

CITATION STYLE

APA

Eroshenko, N., & Church, G. M. (2013). Mutants of Cre recombinase with improved accuracy. Nature Communications, 4. https://doi.org/10.1038/ncomms3509

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free