In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric CO2 recycling and water splitting via renewable energy. For the concept of “methanol economy”, an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called “chemical memory”. All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.
CITATION STYLE
Jeong, C., & Suh, Y. W. (2016, December 1). Preparation of active Cu/ZnO-based catalysts for methanol synthesis. Applied Chemistry for Engineering. Korean Society of Industrial Engineering Chemistry. https://doi.org/10.14478/ace.2016.1109
Mendeley helps you to discover research relevant for your work.