Different topological properties of EEG-derived networks describe working memory phases as revealed by graph theoretical analysis

35Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.

Abstract

Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke.

References Powered by Scopus

Control of goal-directed and stimulus-driven attention in the brain

9965Citations
N/AReaders
Get full text

Complex brain networks: Graph theoretical analysis of structural and functional systems

8890Citations
N/AReaders
Get full text

The control of the false discovery rate in multiple testing under dependency

8091Citations
N/AReaders
Get full text

Cited by Powered by Scopus

A Graph Theory-Based Modeling of Functional Brain Connectivity Based on EEG: A Systematic Review in the Context of Neuroergonomics

85Citations
N/AReaders
Get full text

Exploring EEG Effective Connectivity Network in Estimating Influence of Color on Emotion and Memory

41Citations
N/AReaders
Get full text

Characterization of Visuomotor/Imaginary Movements in EEG: An Information Theory and Complex Network Approach

27Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Toppi, J., Astolfi, L., Risetti, M., Anzolin, A., Kober, S. E., Wood, G., & Mattia, D. (2018). Different topological properties of EEG-derived networks describe working memory phases as revealed by graph theoretical analysis. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00637

Readers over time

‘18‘19‘20‘21‘22‘23‘2409182736

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 43

72%

Researcher 11

18%

Professor / Associate Prof. 6

10%

Readers' Discipline

Tooltip

Neuroscience 21

43%

Engineering 15

31%

Psychology 9

18%

Medicine and Dentistry 4

8%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 43

Save time finding and organizing research with Mendeley

Sign up for free
0