Interannual and seasonal shift between Microcystis and Dolichospermum: A 7-year investigation in Lake Chaohu, China

26Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The shifts among bloom-forming cyanobacteria have attracted increasing attention due to the reductions in nitrogen and phosphorus during the eutrophication mitigation process. However, knowledge is limited regarding the pattern and drivers of the shifts among these cyanobacterial genera. In this study, we performed a 7-year long, monthly investigation in Lake Chaohu, to analyze the interannual and seasonal shifts between Microcystis and Dolichospermum. Our results showed that Microcystis was the dominant cyanobacterium in the western lake region in summer, whereas Dolichospermum was dominant in the other regions and seasons. The Microcystis biomass and ratio were driven primarily by total phosphorus and temperature. The sensitivity of Dolichospermum to nutrients and temperature was relatively weak compared to that of Microcystis. The shifts between Microcystis and Dolichospermum might be led by Microcystis. If the temperature and phosphorus level were relatively high, then Microcystis grew rapidly, and competitively excluded Dolichospermum. If the nutrient level, especially the phosphorus level, was low, then the exclusive power of Microcystis was weak, and Dolichospermum maintained its dominance, even in summer. The key temperature (~17 °C) determined the dominance of the two cyanobacteria. Microcystis never dominated, while Dolichospermum was always dominant below the key temperature. Microcystis and Dolichospermum had different means of responding to the interaction of temperature, nitrogen and phosphorus. The Dolichospermum biomass was sensitive to the variation in nitrogen level, and the sensitivity depended on temperature. While the Microcystis biomass was sensitive to the variation in phosphorus level, and the sensitivity depended on temperature and total nitrogen. The different ways might contribute to the succession of the two cyanobacteria. Our findings will be helpful for improving the understanding of the shift process between Microcystis and Dolichospermum.

Cite

CITATION STYLE

APA

Zhang, M., Yang, Z., Yu, Y., & Shi, X. (2020). Interannual and seasonal shift between Microcystis and Dolichospermum: A 7-year investigation in Lake Chaohu, China. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071978

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free