The recognition of human pose based on machine vision usually results in a low recognition rate, low robustness, and low operating efficiency. That is mainly caused by the complexity of the background, as well as the diversity of human pose, occlusion, and self-occlusion. To solve this problem, a feature extraction method combining directional gradient of depth feature (DGoD) and local difference of depth feature (LDoD) is proposed in this paper, which uses a novel strategy that incorporates eight neighborhood points around a pixel for mutual comparison to calculate the difference between the pixels. A new data set is then established to train the random forest classifier, and a random forest two-way voting mechanism is adopted to classify the pixels on different parts of the human body depth image. Finally, the gravity center of each part is calculated and a reasonable point is selected as the joint to extract human skeleton. The experimental results show that the robustness and accuracy are significantly improved, associated with a competitive operating efficiency by evaluating our approach with the proposed data set.
CITATION STYLE
Wang, H., Zhou, F., Zhou, W., & Chen, L. (2018). Human pose recognition based on depth image multifeature fusion. Complexity, 2018. https://doi.org/10.1155/2018/6271348
Mendeley helps you to discover research relevant for your work.