DETECTION OF CHILDREN'S NUTRITIONAL STATUS USING MACHINE LEARNING WITH LOGISTIC REGRESSION ALGORITHM

  • Yuliana Y
  • Paradise P
  • Qulub M
N/ACitations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Abstract: Children's nutritional issues are an important concern for parents to pay attention to growth and development, especially health and well-being. According to the results of the Ministry of Health's Indonesian Nutrition Status Survey (SSGI), there are 4 nutritional problems for children in Indonesia, namely stunting, wasting, underweight and everweight. In this research, how to predict signs of symptoms of a decline in a child's nutritional status using a machine learning algorithm, a prediction model was designed using logistic regression in Python IDE to predict whether a child is indicated by a decline in nutrition or not. Dataset from Bengkayang Community Health Center data consisting of 657 pediatric patient data. The dataset is divided into 7 features (independent variables) and 1 predictor (dependent variable). Test results show perfect performance with precision, recall, F1-score, accuracy values of 100%. Then the visualization results on the ROC (Receiver Operating Characteristic) curve to depict the TP (True Positive) value on the Y axis against the FP (false Positive) value on the become overfit. It is recommended that in preparing the training dataset, measure the training data and reduce the features, after carrying out feature selection to increase the accuracy of the model.            Keywords: child nutritional status; growth and development logistic regression; machine learning Abstract: Masalah Gizi anak menjadi perhatian penting bagi orangtua untuk memperhatikan tumbuh kembang, terutama kesehatan dan kejahteraan. Menurut hasil survei status Gizi Indonesia (SSGI) Kemenkes memperlihatkan 4 permasalahan gizi anak di Indonesia yaitu stunting, wasting, underweight, dan everweight. Dalam penelitian ini, bagaimana memprediksi tanda gejala penurunan status gizi anak menggunakan  algoritma  machine  learning dirancang model prediksi menggunakan logistic regression pada Python IDE dengan  memprediksi anak  terindikasi  penurunan gizi  atau tidak. Dataset dari data Puskesmas Bengkayang  yang terdiri 657 data pasien anak. Dataset dibagi menjadi 7 feature (variabel independen) dan 1 predictor (variabel dependen). Hasil Pengujian memperlihatkan kinerja yang sempurna dengan nilai presisi, recall,  F1-score, akurasi, sebesar 100%. Kemudian hasil Visualisasi pada kurva ROC (Receiver Operating Characteristic) untuk menggambarkan nilai TP (True Positif) di sumbu Y terhadap nilai FP (false Positif) di sumbu X juga menunjukkan nilai yang sangat tinggi dan sudah mendekati angka 1 ini pertanda bahwa model ini menjadi overfit. Sebaiknya dalam persiapan training dataset diukur dengan data training dan mengurangi feature, setelah melakukan feature Selection untuk meningkatkan akurasi model. Keywords: logistic regression; machine learning; status gizi anak; tumbuh kembang

Cite

CITATION STYLE

APA

Yuliana, Y., Paradise, P., & Qulub, M. (2024). DETECTION OF CHILDREN’S NUTRITIONAL STATUS USING MACHINE LEARNING WITH LOGISTIC REGRESSION ALGORITHM. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 10(2), 267–274. https://doi.org/10.33330/jurteksi.v10i2.2973

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free