Integrating anatomy and function for zebrafish circuit analysis

27Citations
Citations of this article
146Readers
Mendeley users who have this article in their library.

Abstract

Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties - e.g. activity correlation to sensory stimulation or behavior. Advances in three-dimensional functional mapping in zebrafish are promising; however the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function. © 2013 Driever and Arrenberg.

Cite

CITATION STYLE

APA

Arrenberg, A. B., & Driever, W. (2013). Integrating anatomy and function for zebrafish circuit analysis. Frontiers in Neural Circuits, (APR 2013). https://doi.org/10.3389/fncir.2013.00074

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free