This paper presents a model predictive control (MPC) approach to control the steering angle in an autonomous vehicle. In designing a highly automated driving control algorithm, one of the research issues is to cope with probable risky situations for enhancement of safety. While human drivers maneuver the vehicle, they determine the appropriate steering angle and acceleration based on the predictable trajectories of surrounding vehicles. Likewise, it is required that the automated driving control algorithm should determine the desired steering angle and acceleration with the consideration of not only the current states of surrounding vehicles but also their predictable behaviors. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, we define a safe driving envelope with the consideration of probable risky behaviors among the predicted probable behaviors of surrounding vehicles over a finite prediction horizon. For the control of the vehicle while satisfying the safe driving envelope and system constraints over a finite prediction horizon, a MPC approach is used in this research. At each time step, MPC based controller computes the desired steering angle to keep the subject vehicle in the safe driving envelope over a finite prediction horizon. Simulation and experimental tests show the effectiveness of the proposed algorithm.
CITATION STYLE
Lee, J. Y., & Yi, K. S. (2015). MPC based steering control using a probabilistic prediction of surrounding vehicles for automated driving. Journal of Institute of Control, Robotics and Systems, 21(3), 199–209. https://doi.org/10.5302/J.ICROS.2015.14.9012
Mendeley helps you to discover research relevant for your work.