Micro aerial vehicles (MAVs) have been acknowledged as an influential technology for indoor search and rescue operations. The time constraint is a crucial factor in most search and rescue operations. The employed MAVs in indoor environments are characterized by short endurance flight time and limited payload weights. Hence, adding more batteries to extend the flight time is practically not feasible. Typically, most of the indoor missions’ environments might not be accessed and remain unknown. Working in such environments requires effective exploration and information gathering to save time and maximize the coverage area. Furthermore, due to the dynamism of such environments, choosing the least risky trajectory is an important task. This paper proposes a real-time active exploration technique which is capable of efficiently generating paths that minimize the vehicle’s risk and maximize the coverage area. Furthermore, it accomplishes real-time monitoring of sudden changes in the estimated map, due to the dynamic objects, by reevaluating at real-time the destination and trajectory to minimize the risk on the chosen path and simultaneously preserving the maximization of the coverage area. Ultimately, recording the implemented trajectory of the vehicle also assists in time-saving as the vehicle depends on this trajectory during the exit process. The performance of the technique is studied under static and dynamic environments and is also compared with different algorithms.
CITATION STYLE
Mohamed, H., Moussa, A., Elhabiby, M., & El-Sheimy, N. (2018). Real-time efficient exploration in unknown dynamic environments using MAVS. ISPRS International Journal of Geo-Information, 7(11). https://doi.org/10.3390/ijgi7110450
Mendeley helps you to discover research relevant for your work.