Prediction of hospital readmission from longitudinal mobile data streams

3Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Hospital readmissions impose an extreme burden on both health systems and patients. Timely management of the postoperative complications that result in readmissions is necessary to mitigate the effects of these events. However, accurately predicting readmissions is very challenging, and current approaches demonstrated a limited ability to forecast which patients are likely to be readmitted. Our research addresses the challenge of daily readmission risk prediction after the hospital discharge via leveraging the abilities of mobile data streams collected from patients devices in a probabilistic deep learning framework. Through extensive experiments on a real-world dataset that includes smartphone and Fitbit device data from 49 patients collected for 60 days after discharge, we demonstrate our framework’s ability to closely simulate the readmission risk trajectories for cancer patients.

Cite

CITATION STYLE

APA

Qian, C., Leelaprachakul, P., Landers, M., Low, C., Dey, A. K., & Doryab, A. (2021). Prediction of hospital readmission from longitudinal mobile data streams. Sensors, 21(22). https://doi.org/10.3390/s21227510

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free