May a standard VOF numerical simulation adequately complete spillway laboratory measurements in an operational context? The case of Sa Stria Dam

6Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present work aims to assess whether a standard numerical simulation (RANS-VOF model with k e closure) can adequately model experimental measurements obtained in a dam physical model. The investigation is carried out on the Sa Stria Dam, a roller compacted concrete gravity dam currently under construction in Southern Sardinia (Italy). The original project, for which a physical model was simulated, included a downstream secondary dam. However, due to both economic and technical reasons, the secondary dam may not be built. Hence, it is important to assess the flood discharge routing and energy dissipation in the modified plan. Numerical validation is performed adopting the same laboratory configuration, in presence of the downstream dam, and results show a good agreement with mean experimental variables (i.e., pressure, water level). An alternative configuration without the downstream dam is here numerically tested to understand the conditions of flood discharge and assess whether its results can give relevant information for the design of mitigation measures. The topic is of interest also from a more general perspective. Indeed, the feasibility to integrate numerical models with existing laboratory measurements can be very useful not only for new constructions but also for existing dams, which may need either maintenance or upgrading works, such as in case of flood discharge increment.

Cite

CITATION STYLE

APA

Badas, M. G., Rossi, R., & Garau, M. (2020). May a standard VOF numerical simulation adequately complete spillway laboratory measurements in an operational context? The case of Sa Stria Dam. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061606

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free