Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

155Citations
Citations of this article
270Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA. © 2007 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Manuell, A. L., Beligni, M. V., Elder, J. H., Siefker, D. T., Tran, M., Weber, A., … Mayfield, S. P. (2007). Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal, 5(3), 402–412. https://doi.org/10.1111/j.1467-7652.2007.00249.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free