Reactive powder composites Cu-(0–15%)TiH2 containing up to 5% native Cu2O were manufactured by high energy ball milling and then hot-pressed to produce bulk nanostructured copper–matrix alloys reinforced by Cu3Ti3O inclusions. Two high-energy ball-milling (HEBM) protocols were employed for the fabrication of Cu-Ti alloys: single-stage and two-stage ball milling, resulting in an order of magnitude refinement of TiH2 particles in the reactive mixtures. Single-stage HEBM processing led to the partial retention of Ti in the microstructure of hot-pressed specimens as the α-Ti phase and formation of fine-grained (100–200 nm) copper matrix interspersed with 5–20 nm Cu3Ti3O precipitates, whereas the two-stage HEBM led to the complete conversion of TiH2 into the Cu3Ti3O phase during the hot pressing but produced a coarser copper matrix (1–2 μm) with 0.1– 0.2 μm wide polycrystalline Cu3Ti3O layers on the boundaries of Cu grains. The alloy produced using single-stage HEBM was characterized by the highest strength (up to 950 MPa) and electrical conductivity (2.6 × 107 Sm/m) as well as the lowest specific wear rate (1.1 × 10−5 mm3/N/m). The tribological performance of the alloy was enhanced by the formation of Cu3Ti3O microfibers in the wear debris, which reduced the friction coefficient against the Al2O3 counter-body. The potential applications of the developed alloys are briefly discussed.
CITATION STYLE
Vorotilo, S., Loginov, P. A., Churyumov, A. Y., Prosviryakov, A. S., Bychkova, M. Y., Rupasov, S. I., … Levashov, E. A. (2020, July 1). Manufacturing of conductive, wear-resistant nanoreinforced cu-ti alloys using partially oxidized electrolytic copper powder. Nanomaterials. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nano10071261
Mendeley helps you to discover research relevant for your work.