The Fourth Industrial Revolution has had a huge impact on manufacturing processes and products. With rapidly growing technology, new solutions are being implemented in the field of digital representations of a physical product. This approach can provide benefits in terms of cost and testing time savings. In order to test and reflect the operation of an electric car, a digital twin model was designed. The paper collects all the information and standards necessary to transform the idea into a real and virtual model of an electric car. The significance and impact of the study on the improvement of the project are described. The research stand, correlations of components (DC and AC motors, shaft, and wheel of the electric car), and development prospects are presented in the paper. The communication method with the research stand is also presented. The digital twin should communicate in real time, which means obtaining the correct output when the input changes; the input is the AC motor current, and the output is the rotational speed of the DC motor. The relation between inputs and outputs are tested. The kinematics of the electric car are modelled in LabVIEW. The results obtained are compared with historic racing data. The track is also modeled based on satellite data, taking into account changes in terrain height, using the SG Telemetry Viewer application. The parameters of the electric car engine model are tuned based on actual data on the car’s speed and current in the electric motor. The achieved results are presented and then discussed.
CITATION STYLE
Bednarz, T., Baier, A., & Paprocka, I. (2024). A Framework for Communicating and Building a Digital Twin Model of the Electric Car. Applied Sciences (Switzerland), 14(5). https://doi.org/10.3390/app14051776
Mendeley helps you to discover research relevant for your work.