We report a new atomic layer deposition (ALD) process for yttrium oxide (Y2O3) thin films using tris(N,N0-diisopropyl-2-dimethylamido-guanidinato) yttrium(III) [Y(DPDMG)3] which possesses an optimal reactivity towards water that enabled the growth of high quality thin films. Saturative behavior of the precursor and a constant growth rate of 1.1 Å per cycle confirm the characteristic self-limiting ALD growth in a temperature range from 175 C to 250 C. The polycrystalline films in the cubic phase are uniform and smooth with a root mean squared (RMS) roughness of 0.55 nm, while the O/Y ratio of 2.0 reveal oxygen rich layers with low carbon contaminations of around 2 at%. Optical properties determined via UV/Vis measurements revealed the direct optical band gap of 5.56 eV. The valuable intrinsic properties such as a high dielectric constant make Y2O3 a promising candidate in microelectronic applications. Thus the electrical characteristics of the ALD grown layers embedded in a metal insulator semiconductor (MIS) capacitor structure were determined which resulted in a dielectric permittivity of 11, low leakage current density (z107 A cm2 at 2 MV cm1) and high electrical breakdown fields (4.0–7.5 MV cm1). These promising results demonstrate the potential of the new and simple Y2O3 ALD process for gate oxide applications.
CITATION STYLE
Mai, L., Boysen, N., Subaşı, E., De Los Arcos, T., Rogalla, D., Grundmeier, G., … Devi, A. (2018). Water assisted atomic layer deposition of yttrium oxide using tris(N,N0-diisopropyl-2-dimethylamido-guanidinato) yttrium(III): Process development, film characterization and functional properties†. RSC Advances, 8(9), 4987–4994. https://doi.org/10.1039/c7ra13417g
Mendeley helps you to discover research relevant for your work.