Applications of Functional Nanocomposites

  • Tsakalakos T
  • Lehman R
  • Nosker T
  • et al.
N/ACitations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The length scales defining structure and organization determine the fundamental characteristics of a material. Traditional polymeric materials exhibit organization on two length scales: the molecular scale, e.g., the unit cell of the crystal through folding chain or the local arrangement of amorphous polymer phase, and the scale particles/phases within the composite typically much longer length and on the order of micrometers or greater. In immiscible polymer blend, materials (IMPB), however, that melt domains in the nanoscale range, have been observed with ratios that are capable of being generated by manipulating shear rate, temperature, and viscosity during melt processing and by selecting the polymer pair to conform to the requisite viscosity/volume fraction relationship. Properties of IMPB’s have recently shown remarkable enhancements. Nanotechnology of dispersion of nanoparticles in IMPB’s has also been found to be critical component in fabricating nanocomposites of extraordinary structural and functional performance. Among the various methods that are currently used, are functionalization techniques such as coating of nanoparticles with proper material in order to maximize homogeneity of dispersed nanoparticles in the polymer matrix. This approach provides an opportunity for the processing of polymer/ceramic composites at the nanoscale level. Specific examples of ceramic nanoparticle nanocomposite will be discussed with emphasis on mechanical and magnetic properties.

Cite

CITATION STYLE

APA

Tsakalakos, T., Lehman, R. L., Nosker, T. N., Idol, J. D., Renfree, R., Lynch, J., … Lee, E. (2003). Applications of Functional Nanocomposites. In Nanostructures: Synthesis, Functional Properties and Applications (pp. 675–689). Springer Netherlands. https://doi.org/10.1007/978-94-007-1019-1_40

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free