The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in the LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10 4 au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.
CITATION STYLE
Naoz, S., Fragos, T., Geller, A., Stephan, A. P., & Rasio, F. A. (2016). FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS. The Astrophysical Journal Letters, 822(2), L24. https://doi.org/10.3847/2041-8205/822/2/l24
Mendeley helps you to discover research relevant for your work.