A Highly Sensitive, Reliable, and High-Temperature-Resistant Flexible Pressure Sensor Based on Ceramic Nanofibers

123Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Flexible pressure sensors are essential components for soft electronics by providing physiological monitoring capability for wearables and tactile perceptions for soft robotics. Flexible pressure sensors with reliable performance are highly desired yet challenging to construct to meet the requirements of practical applications in daily activities and even harsh environments, such as high temperatures. This work describes a highly sensitive and reliable capacitive pressure sensor based on flexible ceramic nanofibrous networks with high structural elasticity, which minimizes performance degradation commonly seen in polymer-based sensors because of the viscoelastic behavior of polymers. Such ceramic pressure sensors exhibit high sensitivity (≈4.4 kPa−1), ultralow limit of detection (<0.8 Pa), fast response speed (<16 ms) as well as low fatigue over 50 000 loading/unloading cycles. The high stability is attributed to the excellent mechanical stability of the ceramic nanofibrous network. By employing textile-based electrodes, a fully breathable and wearable ceramic pressure sensor is demonstrated for real-time health monitoring and motion detection. Owing to the high-temperature resistance of ceramics, the ceramic nanofibrous network sensor can function properly at temperatures up to 370 °C, showing great promise for harsh environment applications.

Cite

CITATION STYLE

APA

Fu, M., Zhang, J., Jin, Y., Zhao, Y., Huang, S., & Guo, C. F. (2020). A Highly Sensitive, Reliable, and High-Temperature-Resistant Flexible Pressure Sensor Based on Ceramic Nanofibers. Advanced Science, 7(17). https://doi.org/10.1002/advs.202000258

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free