Mix design of fly ash based geopolymer concrete

93Citations
Citations of this article
262Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Geopolymer is a new development in the world of concrete in which cement is totally replaced by pozzolanic materials like fly ash and activated by highly alkaline solutions to act as a binder in the concrete mix. For the selection of suitable ingredients of geopolymer concrete to achieve desire strength at required workability, an experimental investigation has been carried out for the gradation of geopolymer concrete and a mix design procedure is proposed on the basis of quantity and fineness offly ash, quantity of water, grading of fine aggregate, fine to total aggregate ratio. Sodium silicate solution with Na2O = 16.37 %, SiO2 = 34.35 % and H2O = 49.28 % and sodium hydroxide solution having 13Mconcentration were maintained constant throughout the experiment. Water-to-geopolymer binder ratio of 0.35, alkaline solution-to-fly ash ratio of 0.35 and sodium silicate-to-sodium hydroxide ratio of 1.0 by mass were fixed on the basis of workability and cube compressive strength. Workability of geopolymer concrete was measured by flow table apparatus and cubesof 150mm side were cast andtested for compressive strength after specified period of oven heating. The temperature of oven heating was maintained at 60 °C for 24 h duration and tested 7 days after heating. It is observed that the results of workability and compressive strength are well match with the required degree of workability and compressive strength. So, proposed method is used to design normal and standard geopolymer concrete.

Cite

CITATION STYLE

APA

Patankar, S. V., Ghugal, Y. M., & Jamkar, S. S. (2015). Mix design of fly ash based geopolymer concrete. In Advances in Structural Engineering: Materials, Volume Three (pp. 1619–1634). Springer India. https://doi.org/10.1007/978-81-322-2187-6_123

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free