Recent findings regarding nicotinamide adenine dinucleotide (NAD+)-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ noncanonical RNA capping to regulate gene expression. Two methods for transcriptome-wide analysis of NADRNAs, NAD captureSeq and NAD tagSeq, are based on coppercatalyzed azide-alkyne cycloaddition (CuAAC) click chemistry to label NAD-RNAs. However, copper ions can fragment/degrade RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) for labeling NAD-RNAs, followed by identification of tagged RNA by single-molecule direct RNA sequencing. We used this method to compare NAD-RNA and total transcript profiles of Escherichia coli cells in the exponential and stationary phases. We identified hundreds of NAD-RNA species in E. coli and revealed genome-wide alterations of NAD-RNA profiles in the different growth phases. Although no or few NAD-RNAs were detected from some of the most highly expressed genes, the transcripts of some genes were found to be primarily NAD-RNAs. Our study suggests that NAD-RNAs play roles in linking nutrient cues with gene regulation in E. coli.
CITATION STYLE
Zhang, H., Zhong, H., Wang, X., Zhang, S., Shao, X., Hu, H., … Xia, Y. (2021). Use of NAD tagSeq II to identify growth phase-dependent alterations in E. coli RNA NAD+ capping. Proceedings of the National Academy of Sciences of the United States of America, 118(14). https://doi.org/10.1073/pnas.2026183118
Mendeley helps you to discover research relevant for your work.