The widely used “Maxent” software for modeling species distributions from presence-only data (Phillips et al., Ecological Modelling, 190, 2006, 231) tends to produce models with high-predictive performance but low-ecological interpretability, and implications of Maxent's statistical approach to variable transformation, model fitting, and model selection remain underappreciated. In particular, Maxent's approach to model selection through lasso regularization has been shown to give less parsimonious distribution models—that is, models which are more complex but not necessarily predictively better—than subset selection. In this paper, we introduce the MIAmaxent R package, which provides a statistical approach to modeling species distributions similar to Maxent's, but with subset selection instead of lasso regularization. The simpler models typically produced by subset selection are ecologically more interpretable, and making distribution models more grounded in ecological theory is a fundamental motivation for using MIAmaxent. To that end, the package executes variable transformation based on expected occurrence–environment relationships and contains tools for exploring data and interrogating models in light of knowledge of the modeled system. Additionally, MIAmaxent implements two different kinds of model fitting: maximum entropy fitting for presence-only data and logistic regression (GLM) for presence–absence data. Unlike Maxent, MIAmaxent decouples variable transformation, model fitting, and model selection, which facilitates methodological comparisons and gives the modeler greater flexibility when choosing a statistical approach to a given distribution modeling problem.
CITATION STYLE
Vollering, J., Halvorsen, R., & Mazzoni, S. (2019). The MIAmaxent R package: Variable transformation and model selection for species distribution models. Ecology and Evolution, 9(21), 12051–12068. https://doi.org/10.1002/ece3.5654
Mendeley helps you to discover research relevant for your work.