We present a method to probe rare molecular dynamics trajectories directly using reinforcement learning. We consider trajectories that are conditioned to transition between regions of configuration space in finite time, such as those relevant in the study of reactive events, and trajectories exhibiting rare fluctuations of time-integrated quantities in the long time limit, such as those relevant in the calculation of large deviation functions. In both cases, reinforcement learning techniques are used to optimize an added force that minimizes the Kullback-Leibler divergence between the conditioned trajectory ensemble and a driven one. Under the optimized added force, the system evolves the rare fluctuation as a typical one, affording a variational estimate of its likelihood in the original trajectory ensemble. Low variance gradients employing value functions are proposed to increase the convergence of the optimal force. The method we develop employing these gradients leads to efficient and accurate estimates of both the optimal force and the likelihood of the rare event for a variety of model systems.
CITATION STYLE
Das, A., Rose, D. C., Garrahan, J. P., & Limmer, D. T. (2021). Reinforcement learning of rare diffusive dynamics. Journal of Chemical Physics, 155(13). https://doi.org/10.1063/5.0057323
Mendeley helps you to discover research relevant for your work.