Melatonin is well known to modulate the sleep-wake cycle. Accumulating evidence suggests that melatonin also has favorable effects such as anti-oxidant and anti-inflammatory properties in numerous disease models. It has been reported that melatonin has therapeutic effects against cisplatin-induced acute kidney injury (AKI). However, mechanisms underlying the therapeutic action of melatonin on the renal side-effects of cisplatin therapy remain poorly understood. In this study, we showed that melatonin treatment significantly ameliorates cisplatin-induced acute renal failure and histopathological alterations. Increased expression of tubular injury markers was largely reduced by melatonin. Melatonin treatment inhibited caspase-3 activation and apoptotic cell death. Moreover, protein levels of key components of the molecular machinery for necroptosis were decreased by melatonin. Melatonin also attenuated nuclear factor-κB activation and suppressed expression of pro-inflammatory cytokines. Consistent with in vivo findings, melatonin dose-dependently decreased apoptosis and necroptosis in cisplatin-treated mouse renal tubular epithelial cells. Collectively, our findings suggest that melatonin ameliorates cisplatin-induced acute renal failure and structural damages through dual suppression of apoptosis and necroptosis. These results reveal a novel mechanism underlying the therapeutic effect of melatonin against cisplatin-induced AKI and strengthen the idea that melatonin might be a promising therapeutic agent for the renal side-effects of cisplatin therapy.
CITATION STYLE
Kim, J. W., Jo, J., Kim, J. Y., Choe, M., Leem, J., & Park, J. H. (2019). Melatonin attenuates cisplatin-induced acute kidney injury through dual suppression of apoptosis and necroptosis. Biology, 8(3). https://doi.org/10.3390/biology8030064
Mendeley helps you to discover research relevant for your work.