A robust three-dimensional multiscale structural optimization framework with concurrent coupling between scales is presented. Concurrent coupling ensures that only the microscale data required to evaluate the macroscale model during each iteration of optimization is collected and results in considerable computational savings. This represents the principal novelty of this framework and permits a previously intractable number of design variables to be used in the parametrization of the microscale geometry, which in turn enables accessibility to a greater range of extremal point properties during optimization. Additionally, the microscale data collected during optimization is stored in a reusable database, further reducing the computational expense of optimization. Application of this methodology enables structures with precise functionally graded mechanical properties over two scales to be derived, which satisfy one or multiple functional objectives. Two classical compliance minimization problems are solved within this paper and benchmarked against a Solid Isotropic Material with Penalization (SIMP)–based topology optimization. Only a small fraction of the microstructure database is required to derive the optimized multiscale solutions, which demonstrates a significant reduction in the computational expense of optimization in comparison to contemporary sequential frameworks. In addition, both cases demonstrate a significant reduction in the compliance functional in comparison to the equivalent SIMP-based optimizations.
CITATION STYLE
Murphy, R., Imediegwu, C., Hewson, R., & Santer, M. (2021). Multiscale structural optimization with concurrent coupling between scales. Structural and Multidisciplinary Optimization, 63(4), 1721–1741. https://doi.org/10.1007/s00158-020-02773-3
Mendeley helps you to discover research relevant for your work.