State equivalences for rectangular hybrid automata

19Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Three natural equivalence relations on the infinite state space of a hybrid automaton are language equivalence, simulation equivalence, and bisimulation equivalence. When one of these equivalence relations has a finite quotient, certain model checking and controller synthesis problems are decidable. When bounds on the number of equivalence classes are obtained, bounds on the running times of model checking and synthesis algorithms follow as corollaries. We characterize the time-abstract versions of these equivalence relations on the state spaces of rectangular hybrid automata (RHA), in which each continuous variable is a clock with bounded drift. These automata axe useful for modeling communications protocols with drifting local clocks, and for the conservative approximation of more complex hybrid systems. Of our two main results, one has positive implications for automatic verification, and the other has negative implications. On the positive side, we find that the (finite) language equivalence quotient for RHA is coarser than was previously known by a multiplicative exponential factor. On the negative side, we show that simulation equivalence for RHA is equality (which obviously has an infinite quotient). Our main positive result is established by analyzing a subclass of timed automata, called one-sided timed automata (OTA), for which the language equivalence quotient is coarser than for the class of all timed automata. An exact characterization of language equivalence for OTA requires a distinction between synchronous and asynchronous definitions of (bi)simulation: if time actions are silent, then the induced quotient for OTA is coarser than if time actions (but not their durations) are visible.

Cite

CITATION STYLE

APA

Henzinger, T. A., & Kopke, P. W. (1996). State equivalences for rectangular hybrid automata. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 1119, pp. 530–545). Springer Verlag. https://doi.org/10.1007/3-540-61604-7_74

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free