Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine

  • Fitriyana V
  • Lutfi Hakim
  • Dian Candra Rini Novitasari
  • et al.
N/ACitations
Citations of this article
200Readers
Mendeley users who have this article in their library.

Abstract

Sentiment Analysis of Jamsostek Mobile Application Reviews Using the Support Vector Machine Method. Today's technology is evolving quickly, leading to new developments that have helped produce JMO and other mobile applications that can be useful to Indonesians. The reviews or comments in the JMO can be used as a gauge for quality and user satisfaction. This study aims to analyze the quality of JMO applications and classify reviews or opinions into positive, negative, and neutral categories through sentiment analysis. The Support Vector Machine method is used in this analysis process with a linear kernel approach to determine the level of accuracy of classifying JMO application reviews. Research shows that classifying the SVM method against sentiment analysis of reviews or JMO application reviews produces the best accuracy scores, obtaining results with accuracy of 96%, precision of 92%, recall of 96%, and f1-score of 94%, while for the results of most reviews are positive category reviews with a total of 17.571.Keywords: sentiment analysis, JMO, SVM, linear kernel   Perkembangan pesat teknologi saat ini memunculkan inovasi baru untuk menciptakan berbagai aplikasi mobile yang dapat memberi kemudahan bagi masyarakat Indonesia, salah satunya yaitu JMO. Penelitian ini bertujuan untuk menganalisis kualitas aplikasi JMO dan mengklasifikasikan ulasan atau opini kedalam kategori positif, negatif dan netral melalui analisis sentimen. Metode Support Vector Machine digunakan pada proses analisis ini dengan pendekatan kernel linear untuk mengetahui tingkat akurasi dari pengklasifikasian ulasan aplikasi JMO tersebut. Penelitian menunjukkan bahwa pengklasifikasian metode SVM terhadap analisis sentimen ulasan atau review aplikasi JMO menghasilkan nilai akurasi terbaik, didapatkan hasil dengan accuracy 96%, precision 92%, recall 96%, dan f1-score 94%, sedangkan untuk hasil ulasan terbanyak adalah ulasan berkategori positif dengan jumlah 17.571.Kata Kunci: analisis sentimen, JMO, SVM, kernel linear

Cite

CITATION STYLE

APA

Fitriyana, V., Lutfi Hakim, Dian Candra Rini Novitasari, & Ahmad Hanif Asyhar. (2023). Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine. Jurnal Buana Informatika, 14(01), 40–49. https://doi.org/10.24002/jbi.v14i01.6909

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free