Evaluation of a Radiolabeled Macrocyclic Peptide as Potential PET Imaging Probe for PD−L1

11Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The interaction between the immune checkpoint PD-1 and PD−L1 promotes T-cell deactivation and cancer proliferation. Therefore, immune checkpoint inhibition therapy, which relies on prior assessment of the target, has been widely used for many cancers. As a non-invasive molecular imaging tool, radiotracers bring novel information on the in vivo expression of biomarkers (e. g., PD−L1), enabling a personalized treatment of patients. Our work aimed at the development of a PD−L1-specific, peptide-based PET radiotracer. We synthesized and evaluated a radiolabeled macrocyclic peptide adapted from a patent by Bristol Myers Squibb. Synthesis of [68Ga]Ga-NJMP1 yielded a product with a radiochemical purity>95 % that was evaluated in vitro. However, experiments on CHO−K1 hPD−L1 cells showed very low cell binding and internalization rates of [68Ga]Ga-NJMP1 in comparison to a control radiopeptide (WL12). Non-radioactive cellular assays using time-resolved fluorescence energy transfer confirmed the low affinity of the reported parent peptide and the DOTA-derivatives towards PD−L1. The results of our studies indicate that the macrocyclic peptide scaffold reported in the patent literature is not suitable for radiotracer development due to insufficient affinity towards PD−L1 and that C-terminal modifications of the macrocyclic peptide interfere with important ligand/receptor interactions.

Cite

CITATION STYLE

APA

Jouini, N., Cardinale, J., & Mindt, T. L. (2022). Evaluation of a Radiolabeled Macrocyclic Peptide as Potential PET Imaging Probe for PD−L1. ChemMedChem, 17(12). https://doi.org/10.1002/cmdc.202200091

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free