A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration

61Citations
Citations of this article
110Readers
Mendeley users who have this article in their library.

Abstract

Human cognition is characterized by severe capacity limits: we can accurately track, enumerate, or hold in mind only a small number of items at a time. It remains debated whether capacity limitations across tasks are determined by acommonsystem. Here we measure brain activation of adult subjects performing either a visual short-term memory (vSTM) task consisting of holding in mind precise information about the orientation and position of a variable number of items, or an enumeration task consisting of assessing the number of items in those sets.Weshow that task-specific capacity limits (three to four items in enumeration and two to three in vSTM) are neurally reflected in the activity of the posterior parietal cortex (PPC): an identical set of voxels in this region, commonly activated during the two tasks, changed its overall response profile reflecting task-specific capacity limitations. These results, replicated in a second experiment, were further supported by multivariate pattern analysis in which we could decode the number of items presented over a larger range during enumeration than during vSTM. Finally, we simulated our results with a computational model of PPC using a saliency map architecture in which the level of mutual inhibition between nodes gives rise to capacity limitations and reflects the task-dependent precision with which objects need to be encoded (high precision for vSTM, lower precision for enumeration). Together, our work supports the existence of a common, flexible system underlying capacity limits across tasks in PPC that may take the form of a saliency map. © 2014 the authors.

Cite

CITATION STYLE

APA

Knops, A., Piazza, M., Sengupta, R., Eger, E., & Melcher, D. (2014). A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration. Journal of Neuroscience, 34(30), 9857–9866. https://doi.org/10.1523/JNEUROSCI.2758-13.2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free