The contractile to synthetic phenotypic switching of vascular smooth muscle cells (VSMcs) in response to fibroblastgrowthfactor(FGF)hasbeenpreviouslydescribed. However, the role of the inflammatory response induced by FGF signaling in VSMCs and its occurrence in atherosclerosis remains unclear. In the present study, FGF signaling promoted a contractile to secretory phenotypic transition in VSMCs. VSMCs (primary human aortic smooth muscle cells) treated with FGF exhibited a decrease in the protein expression levels of factors involved in contractility and the secretion of various chemokines was increased, as assessed by reverse transcription-quantitative PCR and ELISA. Additionally, inhibition of FGF signaling by silencing FGF receptor substrate 2 (FRS2) decreased the protein expression levels of various chemokines. Furthermore, VSMCs in the medial layers of arteries from apolipoprotein E-deficient mice and human atherosclerotic samples exhibited an increase in FGF signaling that was identified to be associated with an increase in the protein expression levels of pro-inflammatory molecules, including C-C motif chemokine ligand 2, C-X-C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11, compared with wild-type mice and healthy control samples, respectively. The present results suggested that FGF signaling induced dedifferentiation of contractile VSMCs and the transition to a secretory phenotype, which may be involved in the progression of atherosclerosis. Collectively, the present results suggested that the FGF signaling pathway may represent a novel target for the treatment of atherosclerosis.
CITATION STYLE
Qi, M., & Xin, S. (2019). FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Molecular Medicine Reports, 20(1), 162–170. https://doi.org/10.3892/mmr.2019.10249
Mendeley helps you to discover research relevant for your work.