Application of additive layer manufacturing technique on the development of high sensitive fiber bragg grating temperature sensors

75Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

This paper presents the development of temperature sensors based on fiber Bragg gratings (FBGs) embedded in 3D-printed structures made of different materials, namely polylatic acid (PLA) and thermoplastic polyurethane (TPU). A numerical analysis of the material behavior and its interaction with the FBG sensor was performed through the finite element method. A simple, fast and prone to automation process is presented for the FBG embedment in both PLA and TPU structures. The temperature tests were made using both PLA-and TPU-embedded FBGs as well as an unembedded FBG as reference. Results show an outstanding temperature sensitivity of 139 pm/◦C for the FBG-embedded PLA structure, which is one of the highest temperature sensitivities reported for FBG-based temperature sensors in silica fibers. The sensor also shows almost negligible hysteresis (highest hysteresis below 0.5%). In addition, both PLA-and TPU-embedded structures present high linearity and response time below 2 s. The results presented in this work not only demonstrate the feasibility of developing fully embedded temperature sensors with high resolution and in compliance with soft robot application requirements, but also show that the FBG embedment in such structures is capable of enhancing the sensor performance.

Cite

CITATION STYLE

APA

Leal-Junior, A., Casas, J., Marques, C., Pontes, M. J., & Frizera, A. (2018). Application of additive layer manufacturing technique on the development of high sensitive fiber bragg grating temperature sensors. Sensors, 18(12). https://doi.org/10.3390/S18124120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free