Skin penetration analysis of topically applied drugs or active compounds is essential in biomedical applications. Stimulated Raman scattering (SRS) microscopy is a promising label-free skin penetration analysis tool. However, conventional SRS microcopy suffers from limited signal contrast owing to strong background signals, which prevents its use in low-concentration drug imaging. Here, we present a skin penetration analysis method of topical agents using recently developed phase-modulated SRS (PM-SRS) microscopy. PM-SRS uses phase modulation and time-resolved signal detection to suppress both nonlinear background signals and Raman background signals from a tissue. A proof-of-concept experiment with a topically applied skin moisturizing agent (ectoine) in an in vitro skin tissue model revealed that PM-SRS with 1.7-ps probe delay yields a signal contrast 40 times higher than that of conventional amplitude-modulated SRS (AM-SRS). Skin penetration measurement of a topical therapeutic drug (loxoprofen sodium) showed that the mean drug concentration at the tissue surface layer after 240 min was 47.3 ± 4.8 mM. The proposed PM-SRS microscopy can be employed to monitor the spatial and temporal pharmacokinetics of small molecules in the millimolar concentration regime.
CITATION STYLE
Ito, T., Iguchi, R., Matsuoka, F., Nishi, Y., Ogihara, T., & Misawa, K. (2021). Label-free skin penetration analysis using time-resolved, phase-modulated stimulated Raman scattering microscopy. Biomedical Optics Express, 12(10), 6545. https://doi.org/10.1364/boe.436142
Mendeley helps you to discover research relevant for your work.