Heterochromatin protein 1 (HP1) is closely associated with diverse chromatin organization and function in mitosis. However, we almost know nothing about HP1 in mammalian oocyte. Here, we investigated the subcellular distribution of HP1α and its spatial relationship to histone modifications during mouse oocyte maturation. Dynamic migration of HP1α was observed in germinal vesicle with non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) oocytes, which may be essential for the transition of chromatin conformation during the development of antral oocytes. In meiosis, HP1α was clearly detectable at the periphery of chromosomes from pre-metaphase I stage to anaphase-telophase I stage. Spatial correlation between HP1α and histone modifications is highly variable around the time of meiotic resumption. In germinal vesicle oocytes, HP1α almost colocalized with all histone modifications examined in this study except for phosphorylation of serine 28 on histone H3. However, with the breakdown of germinal vesicle, HP1α was detected mostly in the chromosomal domains with strong phosphorylation of serine 10 and 28 on histone H3, and they also partially associated with methylated histones. These results presented the functional implication of histone modifications in the regulation of HP1α during oocyte maturation. In addition, we also showed that blocking the function of HP1α by microinjecting anti-HP1α antibody caused the delay of GVBD, however, this effect may not be achieved through modifying histones. ©2008 Landes Bioscience.
CITATION STYLE
Wang, Q., Jun, S. A., Ola, S. I., Gu, L., Yong, Z. Z., Da, Y. C., & Qing, Y. S. (2008). The spatial relationship between heterochromatin protein 1 alpha and histone modifications during mouse oocyte meiosis. Cell Cycle, 7(4), 513–520. https://doi.org/10.4161/cc.7.4.5356
Mendeley helps you to discover research relevant for your work.