Quercetin is a flavonol compound with excellent biological activities. However, quercetin exhibits poor stability and solubility in water, which limits its application. In this study, quercetin nanoliposomes (QUE-NL-1) were prepared using an ultrasonic thin-film dispersion method, and the preparation conditions were optimized using response surface methodology. The optimal conditions for preparing QUE-NL-1 were as follows: an evaporation temperature of 35 °C, a drug concentration of 0.20 mg/mL, and a lipid bile ratio of 4:1. The encapsulation rate of QUE-NL-1 is (63.73 ± 2.09)%, the average particle size is 134.11 nm, and the average absolute value of the zeta potential is 37.50 and PDI = 0.24. By analyzing the storage temperature, storage time, and leakage rate of QUE-NL-1 in simulated gastrointestinal fluid, it was found that quercetin exhibits good stability after embedding and can achieve sustained release in intestinal juice. In addition, the cytotoxicity of QUE-NL-1 was not significant, and the survival rate of Caco-2 cells was >90% when the concentration range of QUE-NL-1 was 0.1-0.4 mg/mL. This study provides an efficient method for preparing QUE-NL-1 with small particle sizes, good stability, and high safety, which is of great significance for expanding the application range of quercetin.
CITATION STYLE
Liu, X., Yu, S., Lu, X., Zhang, Y., Zhong, H., Zhou, Z., & Guan, R. (2023). Optimization of Preparation Conditions for Quercetin Nanoliposomes Using Response Surface Methodology and Evaluation of Their Stability. ACS Omega. https://doi.org/10.1021/acsomega.3c09892
Mendeley helps you to discover research relevant for your work.