In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM) images based on a 30 m digital elevation model (DEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products. Moreover, we define a normalized factor of a Bidirectional Reflectance Distribution Function (BRDF) to convert the sloping pixel reflectance into a flat pixel reflectance by using the Ross Thick-Li Sparse BRDF model (Ambrals algorithm) and MODIS BRDF/albedo kernel coefficient products. Sole atmospheric correction and topographic normalization were performed for TM images in the upper stream of the Heihe River Basin. The results show that using MODIS atmospheric products can effectively remove atmospheric effects compared with the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model and the Landsat Climate Data Record (CDR). Moreover, superior topographic effect removal can be achieved by considering the surface BRDF when compared with the surface Lambertian assumption of topographic normalization.
CITATION STYLE
Zhang, Y., Li, X., Wen, J., Liu, Q., & Yan, G. (2015). Improved topographic normalization for Landsat TM images by introducing the MODIS surface BRDF. Remote Sensing, 7(6), 6558–6575. https://doi.org/10.3390/rs70606558
Mendeley helps you to discover research relevant for your work.