The reductive carboxylation of ribulose-5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (6PGDH) from Candida utilis was investigated using kinetic isotope effects. The intrinsic isotope effect for proton abstraction from Ru5P was found at 4.9 from deuterium isotope effects on V and V/K and from tritium isotope effects on V/K. The presence of 6-phosphogluconate (6PG) in the assay mixture changes the magnitude of the observed isotope effects. In the absence of 6PG (D)(V/K) and (D)(V) are 1.68 and 2.46, respectively, whereas the presence of 6PG increases (D)(V/K) to 2.84 and decreases (D)(V) to 1.38. A similar increase of (T)(V/K) is observed as 6PG builds up in the reaction mixture. These data indicate that in the absence of 6PG, a slow step, which precedes the chemical process, is rate-limiting for the reaction, whereas in the presence of 6PG, the rate-limiting step follows the isotope-sensitive step. Kinetic analysis of reductive carboxylation shows that 6PG at low concentrations decreases the K(m) of Ru5P, whereas at higher concentrations, the usual competitive pattern is observed. These data indicate that full activity of 6PGDH is achieved when one subunit carries out the catalysis and the other subunit carries an unreacted 6PG. Thus, 6PG is like an allosteric activator of 6PGDH.
CITATION STYLE
Hanau, S., Montin, K., Cervellati, C., Magnani, M., & Dallocchio, F. (2010). 6-Phosphogluconate Dehydrogenase Mechanism. Journal of Biological Chemistry, 285(28), 21366–21371. https://doi.org/10.1074/jbc.m110.105601
Mendeley helps you to discover research relevant for your work.