The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily

164Citations
Citations of this article
107Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Genetic variants in the FTO (fat mass and obesity associated) gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results. We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion. Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II)- and 2-oxoglutarate-dependent dioxygenases) superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans. © 2007 Sanchez-Pulido and Andrade-Navarro; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Sanchez-Pulido, L., & Andrade-Navarro, M. A. (2007). The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochemistry, 8. https://doi.org/10.1186/1471-2091-8-23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free