We carry out a comprehensive joint analysis of high-quality HST/ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated indicating a relaxed cluster. Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray measurements. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by ∼30 per cent at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray luminous small-scale structure can bias observed temperature measurements downward at about the same (∼30 per cent) level. We determine the gas entropy at 0.1rvir (where rvir is the virial radius) to be ∼800 keV cm2, as expected for a high-temperature cluster, but its profile at >0.1rvir has a power-law form with index ∼0.8, considerably shallower than the ∼1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy 'floor' exists at all, then it is within a small region in the inner core, r < 0.02rvir, in accord with previous theoretical studies of massive clusters. © 2008 The Authors.
CITATION STYLE
Lemze, D., Barkana, R., Broadhurst, T. J., & Rephaeli, Y. (2008). Mass and gas profiles in A1689: Joint X-ray and lensing analysis. Monthly Notices of the Royal Astronomical Society, 386(2), 1092–1106. https://doi.org/10.1111/j.1365-2966.2008.13116.x
Mendeley helps you to discover research relevant for your work.