A probabilistic approach to the seismic hazard in Kashmir basin, NW Himalaya

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Northwestern Himalaya is one of the most tectonically active domains of the Himalayan arc. The prevailing complex collisional tectonic setup is able to produce destructive earthquakes, most recent being the 8 October 2005 Kashmir earthquake (M7.6). In this study, the probabilistic seismic hazard assessment of the Kashmir basin of northwestern Himalaya is presented. The seismic hazard is assessed using point, areal and linear source models employing appropriate ground motion prediction equations to predict the expected ground motions. The seismic hazard maps are expressed in terms of g, seismic hazard curves at 2% and 10% probability of exceedance in 50 years and the design response spectra at 5% damping for four major towns of the basin at the engineering bedrock. The results are expressed as the hypocentral depth-wise hazard maps, predicted peak ground acceleration (PGA), pseudo-spectral acceleration (PSA) with 2% and 10% probability of exceedance within 50 years and the design response spectra with 5% damping of four major towns of Kashmir for engineering bedrock sites. The hypocentral depth-wise maps are shown in the ranges of 0–25 km, 25–70 km and > 70 km with 10% probability of exceedance in 50 years. The computation is based on smoothly gridded seismicity for each depth zone with a return period of 475 years. With the seismic source zones considered as sources, the seismic hazard maps show predicted peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA) with 2% and 10% probability of exceedance within 50 years for engineering bedrock sites. The PSA maps are expressed in g at 0.2 and 1 s (s). From this preliminary study it is evident that overall Kashmir basin shows a very high seismic hazard, with southeastern part showing relatively higher hazard as compared to northwestern part. Among the major benchmark towns all show high predicted PGA, Anantnag shows the highest (0.65g). The present study thus advocates a significantly higher seismic hazard as compared to the BIS In: IS 1893–2002 (Part 1): Indian standard criteria for earthquake resistant design of structures, Part 1—general provisions and buildings, (2002).

Cite

CITATION STYLE

APA

Sana, H. (2019). A probabilistic approach to the seismic hazard in Kashmir basin, NW Himalaya. Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0136-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free