This paper describes an approach of recognizing floor plans by assorting essential objects of the plan using deep-learning based style transfer algorithms. Previously, the recognition of floor plans in the design and remodeling phase was labor-intensive, requiring expert-dependent and manual interpretation. For a computer to take in the imaged architectural plan information, the symbols in the plan must be understood. However, the computer has difficulty in extracting information directly from the preexisting plans due to the different conditions of the plans. The goal is to change the preexisting plans to an integrated format to improve the readability by transferring their style into a comprehensible way using Conditional Generative Adversarial Networks (cGAN). About 100-floor plans were used for the dataset which was previously constructed by the Ministry of Land, Infrastructure, and Transport of Korea. The proposed approach has such two steps: (1) to define the important objects contained in the floor plan which needs to be extracted and (2) to use the defined objects as training input data for the cGAN style transfer model. In this paper, wall, door, and window objects were selected as the target for extraction. The preexisting floor plans would be segmented into each part, altered into a consistent format which would then contribute to automatically extracting information for further utilization.
CITATION STYLE
Cho, D., Kim, J., Shin, E., Choi, J., & Lee, J. K. (2020). Recognizing Architectural Objects in Floor-plan Drawings Using Deep-learning Style-transfer Algorithms. In RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th International Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA 2020 (Vol. 2, pp. 719–727). The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA). https://doi.org/10.52842/conf.caadria.2020.2.717
Mendeley helps you to discover research relevant for your work.