Olea europaea L. leaves constitute a source of bioactive compounds with recognized benefits for both human health and technological purposes. In the present work, different extracts from olive leaves were obtained by the application of two extraction methods, Soxhlet and microwave-assisted extraction (MAE), and six solvents (distilled water, ethanolic and glycerol mixtures solvents). MAE was applied under 40, 60 and 80◦C for 3, 6.5 and 10 min. The effect of the extraction method, solvent and treatment factors (the latter in MAE) on the total phenol content (TPC), the antioxidant activity (AA) and the phenolic profile of the extracts were all evaluated. The extracts showed high values of TPC (up to 76.1 mg GAE/g DW) and AA (up to 78 mg TE/g DW), with oleuropein being the most predominant compound in all extracts. The Soxhlet extraction method exhibited better yields in TPC than in MAE, although both methods presented comparable AA values. The water MAE extract presented the strongest antimicrobial activity against five foodborne pathogens, with minimum inhibitory concentration (MIC) values ranging from 2.5 to 60 mg/mL. MAE water extract is proposed to be exploited in the food and nutraceutical industry in the frame of a sustainable economy.
CITATION STYLE
Sánchez-Gutiérrez, M., Bascón-Villegas, I., Rodríguez, A., Pérez-Rodríguez, F., Fernández-Prior, Á., Rosal, A., & Carrasco, E. (2021). Article valorisation of olea europaea l. Olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods, 10(5). https://doi.org/10.3390/foods10050966
Mendeley helps you to discover research relevant for your work.