Comparative Study of High-Resolution LysB29(Nε-myristoyl) des(B30) Insulin Structures Display Novel Dynamic Causal Interrelations in Monomeric-Dimeric Motions

0Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The treatment of insulin-dependent diabetes mellitus is characterized by artificial supplementation of pancreatic β-cell ability to regulate sugar levels in the blood. Even though various insulin analogs are crucial for reasonable glycemic control, understanding the dynamic mechanism of the insulin analogs may help to improve the best-protracted insulin analog to assist people with type 1 diabetes (T1D) to live comfortably while maintaining tight glycemic control. Here, we present the high-resolution crystal structure of NN304, known as insulin detemir, to 1.7 Å resolution at cryogenic temperature. We computationally further investigated our crystal structure’s monomeric-dimeric conformation and dynamic profile by comparing it with a previously available detemir structure (PDB ID: 1XDA). Our structure (PDB ID: 8HGZ), obtained at elevated pH, provides electrostatically triggered minor movements in the equilibrium between alternate conformational substates compared to the previous structure, suggesting it might induce an intermediate state in the dissociation pathway of the insulin detemir’s hexamer:dihexamer equilibrium. Supplemented with orientational cross-correlation analysis by a Gaussian network model (GNM), this alternate oligomeric conformation offers the distinct cooperative motions originated by loose coupling of distant conformational substates of a protracted insulin analog that has not been previously observed.

Cite

CITATION STYLE

APA

Ayan, E., Destan, E., Kepceoglu, A., Ciftci, H. I., Kati, A., & DeMirci, H. (2023). Comparative Study of High-Resolution LysB29(Nε-myristoyl) des(B30) Insulin Structures Display Novel Dynamic Causal Interrelations in Monomeric-Dimeric Motions. Crystals, 13(4). https://doi.org/10.3390/cryst13040648

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free